
9th AIAA/ISSMO Symposium on Multidiscipinary Analysis and Optimization AIAA 2002-5442
4-6 September 2002, Atlanta, Georgia

1
American Institute of Aeronautics and Astronautics

Copyright © 2002 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United States under Title 17, U.s. Code.
The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes.
All other rights are reserved by the copyright owner.

MANAGING MDO SOFTWARE DEVELOPMENT PROJECTS

J. C. Townsend* and A. O. Salas†

NASA Langley Research Center, Hampton, VA 23681-2199

Abstract

Over the past decade, the NASA Langley Re-
search Center developed a series of "grand challenge"
applications demonstrating the use of parallel and
distributed computation and multidisciplinary design
optimization. All but the last of these applications were
focused on the high-speed civil transport vehicle; the
final application focused on reusable launch vehicles.
Teams of discipline experts developed these multidisci-
plinary applications by integrating legacy engineering
analysis codes. As teams became larger and the applica-
tion development became more complex with increas-
ing levels of fidelity and numbers of disciplines, the
need for applying software engineering practices be-
came evident. This paper briefly introduces the applica-
tion projects and then describes the approaches taken in
project management and software engineering for each
project; lessons learned are highlighted.

Introduction

Over the past decade, the Computational Aero-
Sciences (CAS) Team at NASA Langley Research
Center (LaRC), under the High Performance Comput-
ing and Communications Program (HPCCP), managed
the development of grand challenge applications dem-
onstrating the use of parallel and distributed computa-
tion and multidisciplinary design optimization (MDO).1

Teams of discipline experts developed these multidisci-
plinary applications by integrating legacy engineering
analysis codes. As the application development became
more complex with increasing levels of fidelity and
numbers of disciplines, the need for applying software
engineering practices became evident.

All of the CAS project applications at LaRC, ex-
cept for the most recent one, focused on the high-speed
civil transport (HSCT) vehicle (Fig. 1). The early
HSCT applications (HSCT2.1 and HSCT3.5) and their
accompanying software infrastructure were referred to

* Member, Multidisciplinary Optimization Branch; Associate
Fellow AIAA

† Member, Multidisciplinary Optimization Branch

Fig. 1 – Conceptual high-speed civil transport.

as the Framework for Interdisciplinary Design Optimi-
zation (FIDO) project. The last and most complex
HSCT project was referred to as HSCT4.0-CJOpt. The
application was called HSCT4.0, and its significantly
different software infrastructure was called the
CORBA-Java Optimization (CJOpt) framework. The
final CAS grand challenge application project focused
on analyzing reusable launch vehicles (Fig. 2 is an
example); the name of this project was Environment for
Launch Vehicle Integrated Synthesis (ELVIS). The
ELVIS project used a commercial framework to pro-
vide a software infrastructure. In this paper, the term
“framework” means a hardware and software architec-
ture that enables integration, execution, and communi-
cation among diverse disciplinary processes.

Fig. 2 – Conceptual reusable launch vehicle configuration.

The following sections provide brief introductions
to the three projects mentioned above. The main sec-
tions of the paper describe the approaches to project
management and software engineering for each project
and highlight lessons learned. Because software man-
agement was not introduced until halfway through the
program, no software improvement metrics were col-



2
American Institute of Aeronautics and Astronautics

lected; therefore, this paper gives only subjective con-
clusions. The Multidisciplinary Optimization Branch at
LaRC was a major contributor to the CAS projects. The
authors are members of that branch, and one or both of
them were on each of the project teams.

FIDO Overview

The HPCCP CAS Team began the FIDO project
in early 1992. The goal was to distribute an MDO
application across a network of heterogeneous compu-
ters including UNIX workstations, parallel computers,
and vector computers. The team members’ emphasis
was on understanding how to build a system to meet
this goal. Conceptual design of an HSCT was chosen as
the application for FIDO because of the general aero-
space interest in HSCT research at that time.

Development of the FIDO system began as a
proof of concept by performing relatively simple analy-
ses on a group of workstations. This first version used
fast, low-fidelity discipline codes (equivalent plate
structural analysis, linearized aerodynamic analysis,
propulsion table lookup, and a simple range equation
for performance fuel weight estimation), a geometry
given by a set of points, a small number of design
variables (on the order of 10), a simple objective func-
tion (minimize gross aircraft weight), and two simple
constraints (specified range and payload).

After the FIDO concept demonstration, initial de-
velopment was mostly devoted to the framework infra-
structure, particularly the communications library.
These developments culminated in 1994 as the
HSCT2.1 application,2,3 which included static aeroelas-
tic analysis using linear analyses. With a working
framework available, development continued with the
addition of nonlinear analyses for aerodynamics
(marching supersonic Euler code) and for structures
(parallelized finite-element analysis). The resulting
HSCT3.5 application was completed in 1996.

HSCT4.0-CJOpt Overview

Changes in CAS Team and MDO Branch objec-
tives in 1997 brought a decreased emphasis on frame-
work development and an increased emphasis on more
realistic models and higher fidelity analysis codes. The
HSCT4.0 application objective was to demonstrate
simultaneous multidisciplinary shape and sizing opti-
mization of a complete aerospace vehicle configuration
by using high-fidelity finite-element structural analysis,
high-fidelity computational fluid dynamics (CFD)
aerodynamic analysis, full mission-cycle performance
evaluation, and an actual proposed HSCT geometry.
The optimization problem definition was to minimize
aircraft gross takeoff weight using 271 design variables
and approximately 32,000 constraints (primarily struc-

tural). An important goal of HSCT4.0 was to support
upcoming configuration decisions within the NASA
High Speed Research (HSR) program.

An integration approach that used more standard-
ized technologies than FIDO was desired. Because none
of the commercial frameworks available in 1997 could
handle the size and complexity of HSCT4.0, the CJOpt
framework was developed in-house using industry
standard middleware. Although the emphasis of the
project was on the realism of the application, switching
to new technologies required some focus on framework
issues. The analysis part of the design loop was imple-
mented with CJOpt and was completed in 1999.4,5,6

However, before optimization could be implemented,
the project was cancelled in early 2000 because the
HSR program was terminated.

ELVIS Overview

The Environment for Launch Vehicle Integrated
Synthesis (ELVIS) project was initiated in 2000 with
the goal of using high performance computing to im-
plement a system performing conceptual to early pre-
liminary design of a reusable launch vehicle (RLV). An
integrated RLV application was defined with processes
from the Vehicle Analysis and Aerothermodynamics
Branches at LaRC.

The three major elements of the ELVIS system
were an integrated, low-fidelity system analysis (trajec-
tory, weights, aerodynamics, and geometry), an ad-
vanced structural weights analysis (combined finite-
element load-path analysis and theoretical weight
estimation), and an aerothermal database buildup (in-
viscid flow and boundary-layer heating analyses) and
integrated thermal protection system (TPS) sizing
analysis (point-wise thermal analysis coupled with a
multilayer sizing procedure). Minor elements included
an in-orbit radiation analysis and code parallelizations.

The ELVIS project used a commercial integration
framework, so framework development was no longer
an issue. Initial capabilities were demonstrated in all
elements. Cancellation of the HPCCP led to termination
of the ELVIS project in early 2002. Currently, a NASA
technical memorandum is being prepared that will
describe the ELVIS project in detail.

Paper Organization

The remainder of the paper discusses some of the
issues that arose during the FIDO, HSCT4.0-CJOpt,
and ELVIS projects introduced above. The paper is
organized into sections on project management, re-
quirements management, software configuration man-
agement, software design, and testing. Each section
discusses the projects’ experiences in these areas and



3
American Institute of Aeronautics and Astronautics

highlights issues. The paper ends with concluding
remarks on each project.

Project Management

The goal of software project management is to de-
liver a successful product while planning, tracking, and
controlling the project’s objectives, resources, and
risks. In this section, the following critical project
management topics will be discussed as experienced in
each of the three CAS Team projects: software life
cycle application, project scope, software teams (roles
and responsibilities), and customer involvement. A
good Software Project Management Plan (SPMP)
should address these topics.

FIDO Project Management

FIDO started with a small project team of civil
servants and contractor employees working closely
together. The contractor employee who first envisioned
the FIDO architecture was the chief designer, and a
civil servant was the project manager. Each team mem-
ber acted as a discipline expert responsible for integrat-
ing one or more of the disciplines represented in the
project. Thus, the roles and responsibilities of the team
members were initially well-defined.

Based on general guidelines from the HPCCP
CAS Team1 and a few milestones to be met, the team
adopted a development strategy that began with a
feasibility demonstration and followed with a series of
increasingly complex systems that would ultimately
meet the CAS goals. As the team member with the most
solid computer science background, the chief designer
introduced some software engineering practices to the
team (such as coding standards and software configura-
tion management), along with a standard directory
structure across disciplines, a configuration file ap-
proach, and a standard design for the legacy code
drivers. However, the team members did not follow his
guidance consistently. There was no written SPMP, no
clear choice of software life cycle or phases, nor any
development of software requirements.

After choosing the overall architecture, process to
be modeled, and interfaces, the team proceeded directly
to coding without a detailed design or design reviews.
The project documentation was sketchy at best. Al-
though several attempts were made to obtain customers
who could give direction and focus to the FIDO project,
these efforts were unsuccessful.

HSCT4-CJOpt Project Management

The HSCT4.0-CJOpt team had approximately ten
civil servants from three LaRC branches and four full-
time contractor employees. The civil servants provided

the discipline and multidisciplinary expertise under a
technical leader, and the contractor staff supported the
code integration under a contract technical monitor.
Approximately one full-time person supported both
requirements and configuration management; one
person supported testing half time.

In the early stages of the software development,
an initial draft of an SPMP was written, addressing
issues such as project requirements, personnel, man-
agement practices, and software engineering. Although
the software engineering portion was incomplete, the
plan was expected to evolve. The plan identified incre-
mental development as the best candidate life cycle, but
the SPMP was not maintained throughout the project.

Because of its initial link to the HSR program, the
HSCT4.0-CJOpt project had an aggressive software
development schedule. In addition to the integrated
analysis, the requirements included the ability to per-
form various single discipline analyses and optimiza-
tions. To meet the schedule, the project scope was
narrowed and some responsibilities were shifted. The
team decided to have the contractors begin the system
design and implementation while the civil servants
continued to define the multidisciplinary application
requirements. This overlap in life cycle phases is ac-
ceptable in an iterative life cycle. However, coordina-
tion between the civil servants (whose time was
stretched too thinly across multiple projects) and the
contractors (most of whom were supporting the project
exclusively) was not maintained. Consequently, some
requirements and codes were not completely developed
when delivered to the contractors.

Some additional factors made it difficult for the
team to attain project goals. The team transitioned
through three technical leaders with different manage-
ment styles. Also, although a project goal was to sup-
port the HSR program in analyzing HSCT
configurations, close interaction between the CAS and
HSR organizations was not maintained. Thus, the
HSCT4.0-CJOpt project suffered from the lack of
customer focus; team members were left to serve as
their own customer but adequate time to perform this
role was not allocated.

ELVIS Project Management

The ELVIS team had approximately eight civil
servants from four LaRC branches and seven contractor
employees; two members supported requirements and
configuration management full time. Among the les-
sons learned on HSCT4.0 and presented to the ELVIS
team was the recommendation to adopt an evolutionary
software development life cycle. Although the team
agreed with this recommendation, no formal process for
software development was defined. The team defined a



4
American Institute of Aeronautics and Astronautics

long-term vision and scope for the project and a list of
desirable ELVIS system features. However, it did not
prioritize these features nor use them to develop a clear
set of requirements. The SPMP contained no details of
how the software would be managed.

Three subteams were established to address the
major project elements: LittleMAC to demonstrate
multidisciplinary process integration by using a limited
geometry code and fast, low-fidelity analysis codes;
Advanced Structures to automate and extend a manual
sequence of high-fidelity RLV structural analyses; and
Aerothermal-TPS to automate a manual sequence of
high-fidelity analyses for aerothermal database con-
struction and thermal protection system (TPS) design.
Each subteam acted virtually independently within its
scope; the only interteam coordination was participation
in weekly ELVIS meetings. Although the subteam
products were to be integrated after a year or so to
produce an initial ELVIS system, the ELVIS team
never planned how this integration would take place.

ELVIS had the advantages of a well-defined cus-
tomer for each of the subteams and no external program
demands affecting the project milestones. Both the
Vehicle Analysis Branch and the Aerothermodynamics
Branch desired to have automated integrated procedures
for their conceptual design and analysis work. The
principal advocates for automation became leaders or
active participants in the three teams. This active cus-
tomer participation helped focus the teams on produc-
ing useful systems.

Project Management Summary

Because of the evolving nature of the vision and
requirements for a research project, it is impossible to
completely define detailed software requirements
during its early stages. Thus an evolutionary develop-
ment life cycle approach is particularly suited to re-
search projects because it manages an incremental
series of software builds, each of which begins with a
requirements analysis phase that can utilize the results
of previous builds. Project scope should be set consis-
tent with the available resources (time, money, and
people) and should be revisited whenever resources
change. Also, sufficient resources should be allocated
to software engineering activities.

Team leaders are presented with the challenge of
coordinating team members from organizations with
different cultures and mixes of civil servants and con-
tractors. Other issues include the need for team leader
authority in a matrix organization, for clear assignments
to team members, and for team member time commit-
ment and priority (especially when members are in-
volved in multiple projects). Experience with a number
of projects has shown that having an active customer

who is a user of the product being developed focuses
project goals; a development team that is its own cus-
tomer may suffer some loss of focus as a result.

Requirements Management

Requirements management involves determining
the requirements, organizing and documenting the
requirements, and controlling changes to the require-
ments.7 It is a critical area of software engineering that
must be addressed for the success of software projects.
Requirements management is a challenge for any pro-
ject and can be even more challenging in a research
environment, where requirements for a typical project
evolve during the lifetime of the project. Issues present,
but not necessarily addressed, during the CAS projects
included determining the scope of the project, determin-
ing different levels of requirements, documenting
known requirements, managing change to the docu-
mented requirements, defining requirement attributes,
and defining traceability links. This section describes
how requirements management was applied in each of
the three CAS projects.

FIDO Requirements Management

For FIDO, the project manager and chief designer
defined the requirements. The team did not emphasize
distinguishing between requirements development,
design, and implementation phases of the project. In the
end, the team produced no requirements document as
such, although the high-level requirements appeared in
process diagrams, advocacy materials (e.g., presenta-
tions to management), and research papers. The demon-
stration problem implemented in FIDO was based on an
application from the earlier Pathfinder project.8 The
FIDO application was documented at a high level
showing the sequence of codes and key data generated.

Even though requirements were not clearly distin-
guished from other phases, requirements issues were
brought to the attention of the team at weekly meetings,
discussed, and a team consensus reached. However,
because the only documentation was individual notes
kept by team members, these requirements sometimes
had to be revisited and clarified several times. As the
complexity grew in the series of applications imple-
mented in FIDO, the team began to realize the need to
develop and document the requirements further before
proceeding to implementation.

The FIDO vision evolved as the project pro-
gressed. A significant project goal was to develop a
“plug and play” capability that allowed module ex-
change based on different computer codes for the same
discipline. This goal was found to be much more com-
plex than expected; the differences in the code input
and output files made it very difficult to develop a



5
American Institute of Aeronautics and Astronautics

common interface. Therefore, this requirement was
never adequately addressed.

HSCT4.0-CJOpt Requirements Management

In the early stages of the project, the team con-
sulted with the LaRC HSR Office and with representa-
tives from major aerospace companies to understand
the minimum requirements for an HSCT analysis and
optimization system that would address their needs. The
majority of the requirements defined by the HSCT4.0
team addressed the integrated multidisciplinary compu-
tational analysis and optimization process. These re-
quirements were captured by defining the various
computational functions in a hierarchical series of
diagrams. The diagrams showed the order and relation-
ships of the computational functions along with the data
required and generated by the system. This material and
supporting text were assembled into a Software Re-
quirements Specification (SRS).6

At most 20 percent of the process was taken from
a previous project (LCAP9); thus, defining the HSCT4.0
application was a substantial part of the work done in
the project. The SRS evolved over the project lifetime.
Initial draft definitions of the integrated analysis were
developed before coding began. However, some of the
subprocess definitions changed over time. To manage
the requirement changes, several reviews were held;
major releases of the document were placed in configu-
ration management. The low priority placed on docu-
mentation delayed updates to the SRS with changes
identified during the requirements reviews; thus, sev-
eral portions of the system remained undefined for long
periods of time. Because the SRS was the most com-
prehensive description of the HSCT4.0 computational
process, it was published after a thorough review to-
wards the latter stages of the project.

To address traceability, several tables were cre-
ated to trace the HSCT4.0 functional requirements to
the HSCT4.0-CJOpt design elements; the design ele-
ments were traced to configuration items.

ELVIS Requirements Management

The ELVIS team spent considerable time defining
a long-term vision statement for the project, a set of
desirable system features, and a mission analysis, which
included three elements with processes that were for the
most part known. Subsequently, the team broke into
three subteams to automate these processes. Several
Unix scripts, which existed to support low-fidelity
system analysis work at LaRC, were connected for the
ELVIS project and provided the complete LittleMAC
subprocess implementation. The Advanced Structures
subsystem was based on a structural analysis process
that, although previously conducted in various forms

manually, had been neither documented nor automated.
Although all of the pieces of the Aerothermal-TPS
process existed prior to ELVIS, they were not tied
together, they had never been executed together as a
complete process, and several codes were targeted for
replacement.

Initially, various approaches were suggested for
documenting requirements; however, the team never
settled on one approach. Instead, each subteam devised
its own method for documenting its computational
processes. Process information was captured in varying
ways, including flowcharts, use cases, spreadsheets, and
meeting minutes. The requirements were provided by
each subteam’s discipline expert and were discussed at
the weekly subteam meetings. Change management
was not an issue for the subteams because the process
requirements were stable and the subteams were small
(4 to 5 members). But, even with stable requirements, it
was noted by the subteams how time-consuming it was
to keep documentation up to date; thus, activities were
documented at varying degrees of detail across the
teams. Although the expected interactions between the
three subsystems were known at a high level, the re-
quirements for interfaces between the subsystems were
never specified. No reviews of the subteam require-
ments were held at the project level.

Requirements Management Summary

Good communication among team members is a
necessity in software projects; requirements manage-
ment involves communicating goals to the team. Com-
munication became especially important in the multi-
disciplinary CAS projects because of the different areas
of expertise across the team members.

Project management support and team resources
are needed to ensure that the project requirements are
clearly documented and are accessible to all team
members. The project’s approach for requirements
management and analysis should be defined as early as
possible so that the requirements can be written consis-
tently. Handling changing requirements should be a
high priority so that all team members are aware of the
changes. In each CAS project, it was important that the
team knew the process that was being developed; the
sequence of computations and data dependencies
needed to be understood.

To minimize the work involved, requirements
management tools should be employed when possible.
Their use would have assisted the CAS projects in
managing changes to the documents and defining
requirements attributes and traceability. However, the
use of new tools requires allocating project resources so
that the tools can be applied in the project and experi-
ence can be gained.



6
American Institute of Aeronautics and Astronautics

Software Configuration Management

The goal of software configuration management
(SCM) is to increase the reliability and quality of soft-
ware. SCM defines a set of methods and tools for
identifying and controlling software during its devel-
opment and use. The essential elements of an SCM
system are identifying configuration items, establishing
baselines, and controlling changes to the baselines.
Using informal, manual SCM approaches may suffice
for small projects; however, as the size of the team and
the software system increases, version control and
formal processes become necessary. This section de-
scribes how SCM was applied in each of the three CAS
projects.

FIDO SCM

Manual SCM practices were used in the early
stages of the FIDO development. All the files that were
to be configuration managed were placed in a simple
directory structure under one main directory name. The
configuration item list was the list of subdirectories.
One team member acted as configuration manager, who
made baselines by changing the directory permissions
to “read only” and starting the next baseline as a copy
of the baseline with a new name. Each subdirectory was
the responsibility of a single team member, who in-
formed the configuration manager when a code was
ready to become part of a baseline. Although no formal
change procedure was defined, this manual SCM proc-
ess worked reasonably well while the team was small.
However, when the team grew beyond a few members
and the system became more complex, problems arose
in tracking and controlling software changes. Team
members made their own copies of directories and
neglected to follow the established naming conventions.
As a result, confusion eventually arose about which
were the “official” copies of files and directories. These
problems pointed to the need for a more sophisticated
SCM system that allowed the developers to keep track
of multiple versions and multiple system baselines.

One of the SCM problems encountered in FIDO
involved maintaining consistency between the original
legacy code and the corresponding code that became
part of the FIDO system. The development team ne-
glected to baseline the original legacy codes before
changing them to subroutine library form for integra-
tion into FIDO. Consequently, when the owner of the
legacy code produced a new version, it was difficult to
merge the changes into the corresponding FIDO ver-
sion. Eventually, the two code versions became too
different and changes from the code owners were no
longer accepted.

HSCT4.0-CJOpt SCM

The HSCT4.0-CJOpt project worked to establish
an SCM system that included both version control and
change management.10 The TRUEchange software tool
marketed by TRUE Software, Inc. (currently owned by
McCabe & Associates) was selected for version con-
trol.* The Metrics Database software developed by
Computer Sciences Corporation was selected for
change management.

The TRUEchange projects and repositories were
defined based on the organization of the HSCT4.0-
CJOpt software; the SCM personnel needed close
interaction with the CJOpt developers to define a re-
pository file structure that efficiently supported both
TRUEchange tool use and system builds. The Metrics
Database software was customized and a detailed SCM
Plan was written. Although the plan called for multiple
reference areas that supported developer, test, and user
system baselines, only one reference area supporting
testing activities was created because of complications
in the system makefiles. The test-system build was
delayed by the priority of other project activities, pri-
marily the preparation of technical papers. The system
build required several months to complete, because
various problems were encountered with the files that
had been loaded.

Once the build was completed, the SCM personnel
decided to begin utilizing the Metrics Database (to gain
experience with it) rather than improving TRUEchange
file layout or reference area issues. The Metrics Data-
base system consisted of web-based software change
request (SCR) forms, software trouble report (STR)
forms, and promotion notification forms (PNF). The
Metrics Database also produced reports that summa-
rized essential information from the SCRs, STRs, and
PNFs collected. These forms were found to be helpful
in controlling changes to existing project baselines.

Because the time required to adequately support
SCM was underestimated and the participation and
support of managers and team members for SCM was
variable, the goal of consistent SCM use throughout the
HSCT4.0 project was not achieved. However, the
project clearly accrued the benefits from using SCM;
baselines were created and controlled using the SCM
tools and processes, which ensured the integrity of the
HSCT4.0 system.

* The use of trademarks and names of manufacturers in this
report is for accurate reporting and does not constitute an
official endorsement, either expressed or implied, of such
products or manufacturers by the National Aeronautics and
Space Administration.



7
American Institute of Aeronautics and Astronautics

ELVIS SCM

By the time the ELVIS project began, the team
members did not question the need for software con-
figuration management. The ELVIS project chose
Rational Software’s ClearCase and ClearQuest products
for version control and change management software.
An SCM manager was appointed and ClearCase admin-
istrative training was obtained. In addition, several of
the project members received training in the general
usage of ClearCase and ClearQuest. A ClearCase
directory structure was defined for the ELVIS system,
and an SCM Plan was initiated. After the project termi-
nated due to cancellation of HPCCP, a subset of the
ELVIS software and documents was loaded into the
SCM system, anticipating a possible resurrection of
ELVIS.

While the ClearCase SCM tool was being set up,
each ELVIS subteam addressed configuration manage-
ment independently. The Aerothermal-TPS team man-
aged codes using a system supported by the
Aerothermodynamics Branch. The LittleMAC team
began managing files with the manual techniques
described previously. However, due to the number of
LittleMAC versions, this method quickly became
insufficient. The Advanced Structures team did not
address SCM during the ELVIS project time frame.

The modification of original legacy codes was less
of an issue on ELVIS because a commercial framework
was used for integration. However, no plans were made
to bring the analysis source codes into the ELVIS SCM
system, ostensibly because all of them were maintained
under other SCM systems outside of the ELVIS project.
This decision could present a problem if consistency
issues of the nature described in the FIDO section arise
in the future. Also, when codes need to be recompiled,
this approach assumes that the correct code versions
have been recorded and that the codes can be accessed
from the other systems.

SCM Summary

Legacy code configuration management remains
an issue. Often the codes are modified for integration
purposes while the original stand-alone codes continue
to evolve. Merging changes to the original code into the
integrated system can be difficult. Baselining the origi-
nal code in the project’s SCM system can help with this
problem because the version control tools can be used
to merge changes between the different code versions.
Although the tool can perform related functions, good
communication between the developers associated with
a particular code is still required.

Project managers must support the use of configu-
ration management. Successful SCM needs to be done

consistently and requires participation from all project
members. Project management must define how the
SCM will be addressed when both contractor and non-
contractor personnel are involved in the development.
The use of a software tool does not guarantee that
everyone will follow good SCM practices. The team
using the tool must understand the concept of configu-
ration management and consistently follow processes.
A project with little or no experience with configuration
management requires SCM personnel with sufficient
time to dedicate to this area. They need to monitor
usage and push the processes; they also have to see that
the team receives sufficient training on the use of SCM.

Software Design

To meet the CAS high performance computing
requirements, each project’s architecture addressed
parallelism and distribution across heterogeneous
platforms, data management, and legacy code integra-
tion. Frameworks can provide this architectural infra-
structure. Among its advantages, a framework supports
the implementation and execution of applications and
provides a set of services commonly needed in MDO
applications.11 It supports the integration of various
processes, allowing the designer to concentrate more on
the application and less on the programming details. In
addition, a framework can provide a common working
environment, which can increase the productivity of
multidisciplinary projects.

Both the FIDO and HSCT4.0-CJOpt projects in-
cluded the development of the framework as part of the
software development. The ELVIS project employed a
commercial framework to integrate analysis codes and
to execute them in a distributed system. The character-
istics of a framework influence the design and imple-
mentation of an MDO application. Therefore, this
section discusses the development of in-house frame-
works and the use of commercial frameworks in each
CAS project.

FIDO Software Design

The FIDO architecture was based on a modular
design. FIDO application modules were created for
discipline drivers, interdiscipline file translation, and
optimization. In addition, a set of service modules
provided execution start-up, execution flow control,
data management, monitoring, user interface, and
initialization of data. Each of the legacy discipline
source codes was converted to subroutine library form
and wrapped in a driver module. The modules resided
on the most appropriate types of computer and were
connected through a message-passing library.

Most message passing went through the data man-
ager; minimal data was passed directly between mod-



8
American Institute of Aeronautics and Astronautics

ules for synchronization. The data manager read con-
figuration files and the initial data to set up the applica-
tion. These configuration files included input and
output data definitions and other information, such as
the machines on which the modules executed. To im-
prove communication efficiency, the data were grouped
into packages defined in the configuration files.

Other FIDO features included the Spy module and
the graphical user interface, which displayed a hierar-
chical flow diagram of process modules colored to
depict their status. The Spy module, which could be
started in multiple instances during execution, allowed
local and remote users to see text or graphics of values
associated with problem definition, cycle status, and
available data; to see cycle history for selected data;
and to see timing information. In addition to the data
available through Spy, the FIDO design allowed any
module to be run under a debugger while the others ran
normally. This capability for debugging individual
modules was particularly helpful when tracking down
communications problems.

HSCT4.0-CJOpt Software Design

Changes in both the MDO Branch and the CAS
Team areas of focus led to more emphasis on realism of
application and a de-emphasis on framework develop-
ment. Framework evaluations taking place at this time
determined that no commercial product would be able
to support the expected complexity of HSCT4.0 and the
HPCCP requirements for distribution and parallelism.
Because of the complexities of the FIDO system, the
team decided to replace it with a simpler in-house
framework based on current industry-standard tech-
nologies. The key architectural decisions for the new
framework, called CJOpt, were to use current distrib-
uted object middleware technologies (Java Remote
Method Invocation (RMI) and CORBA (Common
Object Request Broker Architecture) compliant soft-
ware), a current object-oriented language (Java), and a
commercial relational database.12,13 The approach to
integrating legacy codes within this architecture was
prototyped with two smaller systems (the HSCT2.1
application and a nonlinear aerodynamics optimiza-
tion14) prior to designing and implementing HSCT4.0.

The HSCT4.0 application was designed as a hier-
archy of top-level “parent” objects, generally corre-
sponding to primary discipline processes, and lower
level “child” objects performing support services.
These objects were distributed over a network of Sun
and Silicon Graphics computers. For use in objects,
most analysis codes were converted from their stand-
alone program form to a function form, primarily so
they could return error codes to the HSCT4.0 system.
FORTRAN analysis function calls and system calls to
invoke executable codes were made from C wrappers.

Java was chosen to define the objects for the fol-
lowing reasons: it supports distributed applications, its
multithreading capability provides a convenient method
for implementing parallelism within the application, it
supports access to relational databases, and it allows
integration with codes written in languages other than
Java. The use of Java RMI and CORBA with the Inter-
ORB Protocol allowed the application objects to be
invoked remotely without considering the details of the
underlying communication constructs and protocols.
With this architecture, the client only needs to know the
interface definition of a remote object to communicate
with it. The database held key data used in the
HSCT4.0 analysis and also information about the
numerous data files, including host computer and file
path. Using this information, the HSCT4.0 Java objects
moved files from one machine to another with the
UNIX remote copy command.

The contractors provided flowcharts documenting
the design to the team at various points during the
project. However, a design document and a users’
manual for internal use were not completed until the
latter stages of the project.

ELVIS Software Design

The three ELVIS subteams were formed early in
the project. Each of these subteams proceeded inde-
pendently to develop its own useful product, which
would eventually become a part of the ELVIS applica-
tion. The ELVIS project chose to use a commercial
integration framework, ModelCenter and Analysis
Server from Phoenix Integration. Also, based on
HSCT4.0-CJOpt experience, an ELVIS multiuser
runtime environment was defined. Other than these two
decisions, the subteams did not coordinate on the de-
sign of the framework components or the interfaces
between the subsystems, which posed a risk for the
eventual ELVIS integration effort. Each subteam held
weekly meetings to review its design and implementa-
tion. The subteams took different approaches to design
documentation.

The LittleMAC team used an experimental proto-
type based on its scripted process to prove that Model-
Center could integrate the legacy computer codes. The
prototype and the more robust system that followed
were designed using ModelCenter’s direct variable
linkage. Later, two other strategies for implementation
were developed by using ModelCenter script compo-
nents for process flow control. All three methods gave
the same computed results; the subteam documented
the advantages and disadvantages of each and recom-
mended an approach. One unresolved issue was
whether to use an external database (as was done in
HSCT4.0) to hold variable values and file names rather
than to have them all contained within ModelCenter. A



9
American Institute of Aeronautics and Astronautics

partial design was captured after implementation by
using several Unified Modeling Language diagrams.

The Advanced Structures team captured their
software design in flowcharts and pseudo-code dia-
grams from which the ModelCenter components were
identified. These components corresponded to a number
of basic physical components (nose, tank, payload bay,
etc.) that could be assembled in various ways into an
RLV. Each component used a coarse finite element
model for a structural load-path analysis supplemented
by a HyperSizer analysis to obtain the equivalent of a
high-fidelity stress analysis on a fully detailed finite-
element model.

The ELVIS Aerothermal-TPS team process per-
formed an aerothermodynamics analysis and generated
a database, which was then used to design a thermal
protection system. The database generation used both
coarse-grain and fine-grain parallel computing tech-
niques. The ModelCenter implementation used wrap-
pers to run scripts spawning the executions of the
process codes. In this case, the wrapped script imple-
mentation was needed because ModelCenter did not
directly support parallel execution of codes. Design
issues, including directory structure details, were cap-
tured in charts and spreadsheets.

Software Design Summary

One goal of the CAS projects was to develop eas-
ier ways to assemble applications. The HSCT4.0-CJOpt
project moved in this direction by replacing the FIDO
architecture with standard distributed-object middle-
ware and languages that supported networking. The use
of the Phoenix framework on ELVIS further advanced
this goal by providing framework tools that essentially
glue the application pieces together. Whether or not a
framework is used, the team needs to address wrapping
and integration issues early in the project. On each of
the CAS projects, prototyping has been helpful in
sorting out architectural issues.

All of the CAS projects would have benefited
from earlier and more complete design documentation.
Documentation is especially important for communica-
tion when different groups are responsible for different
areas of the software development. Having documenta-
tion for review would also help ensure consistency of
design across the system.

Testing

In the early stages of the software development
life cycle, a software project should begin to develop
verification and validation plans. These plans evolve
during the course of the development. Software verifi-
cation determines if the software correctly implements

the software requirements. Multiple levels of tests
should be conducted, including unit, integration, sys-
tem, and acceptance tests. Software validation deter-
mines if the software fulfills the customer’s require-
ments. Because in research the answers are not known
ahead of time, validation is difficult and likely to be
mostly empirical, e.g., made by comparing results with
other computations or with experimental data. The
following subsections discuss the testing experiences of
each CAS project.

FIDO Testing

FIDO began with a stronger focus on demonstrat-
ing the parallel, distributed computation capability than
on the multidisciplinary application realism. Therefore,
testing the distributed application was not emphasized.
Tests were neither planned nor documented.

Although the initial demonstration application was
based on the Pathfinder project,8 no test cases were
conveniently available to the project for conducting
comparisons across the two systems. Tests were con-
ducted to verify that the automated version ran cor-
rectly. The analysis code integration and the control
flow implementations were checked for correctness.
Care was taken to verify that the data were passed
correctly within each discipline driver and between the
disciplines and the data manager. To address validation,
the engineers used their expert judgment to determine if
the applications results looked reasonable.

HSCT4.0/CJOpt Testing

Increased focus on application realism and antici-
pated interaction with the LaRC HSR Program Office
led to plans for formally testing the HSCT4.0 applica-
tion. As was noted earlier in the Requirements Man-
agement section, defining the multidisciplinary process
was a large part of the project’s effort. Having no
previously existing system test cases available for
validation and verification complicated the testing
process. LCAP results could be used to verify computa-
tional trends only for a portion of the process.

The civil servants were to be responsible for vali-
dating the multidisciplinary analyses and optimization
runs. This validation involved defining the system
analysis and optimization test cases and analyzing the
results from the system studies. Two system test cases
were defined to support verification and validation.
However, these test cases were not defined until most
of the integration had taken place. In addition, the civil
servants provided unit tests for some of the analysis
codes to the contractors. The late test planning and the
lack of defined tests for some portions of the HSCT4.0
process made it more difficult to adequately test the
CJOpt implementation.



10
American Institute of Aeronautics and Astronautics

To compensate for insufficient testing of the inte-
grated system, the civil servants performed independent
unit and integration tests outside of the CJOpt frame-
work using the original unmodified HSCT4.0 codes. It
was later discovered that this testing process was not
performed thoroughly enough. The testing needed to be
monitored more closely and may have needed more
precise definition. Part of the problem was due to a
necessary cultural change; researchers normally accus-
tomed to dealing with their own codes appeared reluc-
tant to perform integration tests involving codes they
did not own. In addition, to adequately perform these
independent integration tests would have required
communicating with other project personnel and under-
standing the corresponding CJOpt implementation.

The testing difficulties that arose called attention
to the consequences of not having planned the tests
early in the project. In particular, having a carefully
considered test plan would have improved the effi-
ciency of the overall integration activity, saving time in
completion of the HSCT4.0 analysis process.

ELVIS Testing

As was noted in the Requirements Management
section, the ELVIS subsystem computational processes
were for the most part defined prior to ELVIS. Previ-
ously computed results were available for supporting
subsystem implementation verification within the
commercial framework. None of the subsystem projects
explicitly documented test plans or test results, and
there were no documented ELVIS system test plans.

The LittleMAC script implementation provided a
convenient way to verify that the ModelCenter imple-
mentation of the process was done correctly. These
original scripts had never been validated completely;
engineering judgment was used to determine if the
results were reasonable. After the LittleMAC process
was implemented in ModelCenter, several optimization
runs and parametric studies were conducted to assess
reasonable problem formulation.

Verification plans for the Advanced Structures
subsystem included comparing the implementations
with past work with the structural process. However,
during the design of the ELVIS structures subsystem,
some modifications were made to the manual process.
Therefore, the comparisons were to focus on matching
trends rather than exact results. The structures process
was never validated; to do so, the computed weights
would need to be calibrated with a real vehicle.

Although sample results existed for the various
codes and for some portions of the Aerothermal-TPS
process, no existing test case exercised the entire proc-
ess. A set of unit tests was put together for verification

testing on the analysis codes. The subteam created a
simplified test case that exercised the entire process and
could be used as a demonstration case. The team
planned to extend a more complicated test case, which
existed prior to ELVIS, to cover the entire process. As
was the case with the other subsystems, validation of
the computational process consisted of applying engi-
neering judgment when analyzing results.

Testing Summary

The need for verification and validation rose as
the complexity of the CAS applications increased.
Verification is more easily conducted when previous
implementations of the process exist. If the process has
to be defined as part of the project’s work, verification
becomes more complicated. If time permits, supporting
scripts can be created to assist in verifying the inte-
grated system. But, in general, it is not practical to
implement the system in multiple ways just to support
verification within a project.

Contractor personnel have performed the code in-
tegration for the CAS projects. The project management
needs to decide who will do which types of testing. If
the contractors are to perform the bulk of the testing,
they need to provide a documented plan of how this
testing will be accomplished. However, if the civil
servants are doing integration and system testing, the
project should adopt a life cycle such that the civil
servants receive planned, incremental builds and thus
can perform continuous testing throughout the software
life cycle. Regardless of who performs the testing,
teams should develop verification and validation test
plans early in the project; these plans should cover all
types of tests to be performed and should be updated
regularly.

Conclusions

The general conclusion from experience with the
CAS projects is that large research projects involving
large-scale computer implementation are also software
development projects and need to be managed as such.
This paper reviews the critical areas of software man-
agement and describes the approach taken on each CAS
project; each software topic section concludes with a
summary subsection that highlights key issues and
lessons learned. Although the project teams were inex-
perienced in software management, progress was made
in this direction after surviving the initial culture shock.
Each of the projects described was very different, and
each had its own problems and successes.

The FIDO project was the first of the CAS pro-
jects and it emphasized developing an integration
system that would support maximizing computation
distribution and parallelization. Although the steps



11
American Institute of Aeronautics and Astronautics

taken to manage the project as a software project were
largely ad hoc and the system was viewed as unneces-
sarily complex, FIDO successfully demonstrated dis-
tributed MDO and was visionary in some of the
features that were prototyped or implemented.

The HSCT4.0-CJOpt project defined a complex
multidisciplinary analysis and implemented it by using
modern distributed computing technologies. Although
the project could have benefited from better communi-
cation and coordination between civil servant and
contractor team members and the presence of a real
customer, the complex analysis was successfully im-
plemented in a relatively short period of time. The
project also introduced some fundamental software
management practices, specifically requirements analy-
sis and configuration management, to a research pro-
ject.

Although the ELVIS project could have used
stronger coordination among subteams, each subteam
had a key member who was also a direct customer; each
one provided requirements and actively participated in
developing the subteam’s software. The focus they
provided to the project and their satisfaction with the
progress contributed to creating a positive team envi-
ronment. Also, the project was not pushed by unrealis-
tic milestones, so the work could take place at a
reasonable pace.

References

1 Holst, T. L., Salas, M. D., and Claus, R. W., “The
NASA Computational Aerosciences Program – Toward
TeraFLOPS Computing,” 30th Aerospace Sciences
Meeting and Exhibit, Reno, NV, AIAA-92-0558, Jan.
1992.
2 Townsend, J. C., Weston, R. P., and Eidson, T. M., “A
Programming Environment for Distributed Complex
Computing – An Overview of the Framework for
Interdisciplinary Design Optimization (FIDO) Project,”
NASA TM-109058, Dec. 1993.
3 Weston, R. P., Townsend, J. C., Eidson, T. M., and
Gates, R. L., “A Distributed Computing Environment
for Multidisciplinary Design,” 5th AIAA/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimi-
zation, Panama City Beach, FL, AIAA-94-4372-CP,
Sept. 1994, pp. 1091–1097.
4 Walsh, J. L., Townsend, J. C., Salas, A. O., Samareh,
J. A., Mukhopadhyay, V., and Barthelemy, J.-F., “Mul-
tidisciplinary High Fidelity Analysis and Optimization
of Aerospace Vehicles – Part 1: Formulation,” 38th

AIAA Aerospace Sciences Meeting, Reno, NV, AIAA-
2000-0418, Jan. 2000.

5 Walsh, J. L., Weston, R. P., Samareh, J. A., Mason, B.
H., Green, L. L., and Biedron, R. T., “Multidisciplinary
High Fidelity Analysis and Optimization of Aerospace
Vehicles – Part 2: Preliminary Results,” 38th AIAA
Aerospace Sciences Meeting, Reno, NV, AIAA-2000-
0419, Jan. 2000.
6 Salas, A. O., Walsh, J. L., Mason, B. H., Weston, R.
P., Townsend, J. C., Samareh, J. A., and Green, L. L.,
“HSCT4.0 Application Software Requirements Specifi-
cation,” NASA TM-2001-210867, May 2001.
7 Leffingwell, D., and Widrig, D., Managing Software
Requirements – A Unified Approach. Upper Saddle
River, NJ, Addison-Wesley, 2000.
8 Barthelemy, J.-F. M., Wrenn, G. A., Dovi, A. R.,
Coen, P. G., and Hall, L. E., “Supersonic Transport
Wing Minimum Weight Design Integrating Aerody-
namics and Structures,” Journal of Aircraft, Vol. 31,
No. 2, 1994, pp. 330–338.
9 Walsh, J. L., Dunn, H. J., Stroud, W. J., Barthelemy,
J.-F., Martin, C. J., and Bennett, R. M., “Aeroelastic
Sizing for High-Speed Research (HSR) Longitudinal
Control Alternatives Project (LCAP),” NASA TP to be
published 2002.
10 Townsend, J. C., Salas, A. O., and Schuler, M. P.,
“Configuration Management of an Optimization Appli-
cation in a Research Environment,” NASA TM-1999-
209335, June 1999.
11 Salas, A. O., and Townsend, J. C., “Framework
Requirements for MDO Application Development,” 7th

AIAA/USAF/NASA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, St. Louis, MO,
AIAA-98-4740, Sept. 1998.
12 Sistla, R., Dovi, A. R., Su, P., and Shanmugasunda-
ram, R., “Aircraft Design Problem Implementation
Under the Common Object Request Broker Architec-
ture,” 40th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference and
Exhibit, St. Louis, MO, 1999, pp. 1296–1305B.
13 Sistla, R., Dovi, A. R., and Su, P., “A Distributed,
Heterogeneous Computing Environment for Multidisci-
plinary Design & Analysis of Aerospace Vehicles,” 5th

National Symposium on Large-Scale Analysis, Design
and Intelligent Synthesis Environments, Oct 12–15,
1999, Williamsburg, VA.
14 Biedron, R. T., Samareh, J. A., and Green, L. L.,
“Parallel Computation of Sensitivity Derivatives with
Application to Aerodynamic Optimization of a Wing,”
1998 Computer Aerosciences Workshop, NASA CP-
20857, Jan. 1999, pp. 219–224.


